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Abstract In this paper an initial-value problem for a non-linear hyperbolic Fisher equation is considered in detail.
The non-linear hyperbolic Fisher equation is given by

εutt + ut = uxx + F(u) + εF(u)t ,

where ε > 0 is a parameter and F(u) = u(1 − u) is the classical Fisher kinetics. It is established, via the method of
matched asymptotic expansions, that the large-time structure of the solution to the initial-value problem involves
the evolution of a propagating wavefront which is either of reaction–diffusion or reaction–relaxation type. It is dem-
onstrated that the case ε = 1 is a bifurcation point in the sense that for ε > 1 the wavefront is of reaction–relaxation
type, whereas for 0 < ε < 1, the wavefront is of reaction–diffusion type.

Keywords Asymptotics · Hyperbolic Fisher equation · Travelling waves

1 Introduction

Parabolic reaction–diffusion equations, such as Fisher’s equation, have been extensively studied over recent years.
However, these equations arise from the assumption of Fickian diffusion, and have the physically unrealistic property
that material diffuses to arbitarily large distances in infinitesimal time. In [1], a remedy to remove this unphysi-
cal property, was proposed and discussed in detail. This was based upon a modified Fick’s law, which includes a
relaxation effect and takes the form (2.3). This modification through relaxation, in the context of thermal diffusion,
chemical, population and biological dynamics has been discussed in [2]. The introduction of this modified Fick’s
law then leads to the hyperbolic Fisher model, which is derived in Sect. 2.

Substantial work on a related hyperbolic Fisher model has been developed by Gallay and Raugel [3–5]. However,
the relaxation process included in their model is significantly different to the one presented here, and this leads to
significantly differing dynamics once the system moves away from being only weakly hyperbolic, in particular with
regard to permanent-form travelling waves.

In a recent paper, [6] (hereafter, referred to as NK), the evolution of travelling waves in a weakly hyperbolic
generalized Fisher equation of order p (>0) was considered. It was established that the large-time structure of the
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solution involves the evolution of a propagating wave-front. This wave-front is of reaction–diffusion type when
p ≥ 1, while of reaction–relaxation type when 0 < p < 1.

The results of NK (where the relaxation time-scale was considered to be very much smaller than the reaction
time-scale) have been extended in [7] (hereafter, referred to as NL) by considering the more general situation when
the relaxation time-scale is of the same order as, or very much greater than, the chemical time-scale. However,
attention was restricted to classical Fisher kinetics (that is, p = 1) and consideration of the travelling-wave problem
established the conditions under which permanent-form travelling-wave (PTW) solutions exist. Some preliminary
numerical solutions of the initial-boundary-value problem where also presented, which illustrate the formation of
these wave-fronts.

In this present paper we extend the work of NL by using the method of matched asymptotic expansions to
obtain the complete large-time structure of the solution to the initial-value problem, with particular emphasis on
the propagating wave-front.

2 The hyperbolic Fisher model

We consider the situation in which a chemical species U undergoes simple quadratic autocatalysis in one spatial
dimension.

2.1 The system

With x̄ measuring distance and t measuring time, the law of mass action then requires

d

dt

{∫ x̄2

x̄1

u dx̄

}
= [q]x̄2

x̄1
+

∫ x̄2

x̄1

R(u) dx̄, x̄2 > x̄1 ∈ R, t > 0. (2.1)

Here, u (moles per unit length) is the concentration of the autocatalyst U and q (moles per unit time) is the chemical
flux of U . R(u) (moles per unit length per unit time) is the reaction rate, which, for the Fisher kinetics, is given by

R(u) = [ku(us − u)]+ =
{

ku(us − u), u ≥ 0,

0, u < 0
(2.2)

with k > 0 being the rate constant and us > 0 the saturation concentration. We observe that R : R → R is Lipschitz
continuous. To close model (2.1) we must relate q to u. As discussed earlier we do this by modifying the classical
Fick’s law to include a relaxation effect. Thus we have the modified Fick’s law,

q + T̄ qt = −Dux̄ , x̄ ∈ R, t > 0. (2.3)

Here D > 0 is the usual Fickian diffusivity, while T̄ > 0 is the relaxation time (note that in NK, the relaxation
time-scale was considered very much smaller than the reaction time-scale). Setting T̄ = 0 recovers the usual Fick’s
law.

It is now convenient to introduce dimensionless variables. Using the chemical time-scale and the associated
diffusion length-scale, we write

t = (kus)
−1t ′, x̄ =

(
D

kus

) 1
2

x̄ ′, u = usu′, q =
(

kus

D

) 1
2

Dusq ′. (2.4)

On substituting from (2.4) in (2.1) and (2.3) (and dropping primes for convenience), we obtain

d
dt

{∫ x̄2
x̄1

u dx̄
}

= [q]x̄2
x̄1

+
∫ x̄2

x̄1

[u(1 − u)]+ dx̄, x̄2 > x̄1 ∈ R, t > 0.

εqt + ux̄ = −q, x̄ ∈ R, t > 0.

⎫⎬
⎭ (2.5)
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Here ε = T̄ (kus) is a dimensionless measure of the ratio of the relaxation time-scale to the chemical reaction
time-scale. We now introduce the domain

DT = {(x̄, t) : −∞ < x̄ < ∞, 0 < t ≤ T }
for any T > 0, and to proceed we shall assume, at this stage, that

u, q ∈ BC[D̄T \ {(0, 0)}], u, q ∈ C1[DT ]. (2.6)

Under (2.6), Eq. 2.5 may be reduced to differential form, becoming

ut + qx̄ = [u(1 − u)]+, on DT , (2.7a)

εqt + ux̄ = −q, on DT , (2.7b)

where ε > 0. The initial and boundary conditions to be considered with (2.7) are

u(x̄, 0) =
{

1, x̄ ≤ 0,

0, x̄ > 0,
(2.8)

q(x̄, 0) = 0, −∞ < x̄ < ∞, (2.9)

u(x̄, t), q(x̄, t) → 0 as x̄ → ∞, t ∈ [0, T ], (2.10)

u(x̄, t) → 1,

q(x̄, t) → 0,

}
as x̄ → −∞ t ∈ [0, T ] (2.11)

We further observe that, with ε > 0, the system (2.7) is strictly hyperbolic with wave speeds ±ε−1/2, becoming
parabolic when ε = 0. Before proceeding further, it is first convenient to rescale Eqs. 2.7. In effect, we rescale time
on the relaxation time-scale. We introduce new variables as

x̄ = ε
1
2 x, t = ετ, u = ū, q = ε− 1

2 q̄ (2.12)

in terms of which (2.7–2.11) become

ūτ + q̄x = ε[ū(1 − ū)]+,

q̄τ + ūx = −q̄,

}
on DT , (2.13)

ū(x, 0) =
{

1, x ≤ 0,

0, x > 0,
(2.14)

q̄(x, 0) = 0, −∞ < x < ∞, (2.15)

ū(x, τ ), q̄(x, τ ) → 0 as x → ∞, τ ∈ [0, T ], (2.16)

ū(x, τ ) → 1,

q̄(x, τ ) → 0,

}
as x → −∞ τ ∈ [0, T ]. (2.17)

Equations 2.13 can now be written in vector form as

vτ + Avx = F(v) on DT , (2.18)

where

v =
(

ū
q̄

)
, A =

(
0 1
1 0

)
, F(v) =

(
εū(1 − ū)

−q̄

)
. (2.19)

The eigenvalues of A (wave speeds) are now ±1, confirming that (2.18) is strictly hyperbolic. We next put (2.18)
into canonical form. This is achieved by introducing α, β via the invertible linear transformation,

α = 1

2
(ū + q̄), β = 1

2
(ū − q̄), (2.20)
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which has inverse,

ū = α + β, q̄ = α − β. (2.21)

In terms of α, β (2.13–2.17) then become

ατ + αx = f (α, β),

βτ − βx = g(α, β),

}
on DT , (2.22)

α(x, 0) = β(x, 0) =
{ 1

2 , x ≤ 0,

0, x > 0,
(2.23)

α(x, τ ), β(x, τ ) →
{ 1

2 , x → −∞,

0, x → ∞,
τ ∈ [0, T ]. (2.24)

Here,

f (α, β) =
{ 1

2ε(α + β)(1 − α − β) − 1
2 (α − β), α + β ≥ 0,

− 1
2 (α − β), α + β < 0,

(2.25)

g(α, β) =
{

1
2ε(α + β)(1 − α − β) + 1

2 (α − β), α + β ≥ 0,

1
2 (α − β), α + β < 0.

(2.26)

It is instructive now to examine the characteristic form of (2.22). We denote the characteristic families as follows,

C+ : x = τ + constant,
C− : x = −τ + constant

}
(2.27)

with τ ∈ [0, T ]. In terms of the two families of characteristic curves, C±, equations (2.22) become

ατ = f (α, β) on C+, τ ∈ (0, T ], (2.28a)

βτ = g(α, β) on C−, τ ∈ (0, T ]. (2.28b)

In what follows we divide D̄T into the following three disjoint domains,

I = {(x, τ ) ∈ D̄T : x > τ },
II = {(x, τ ) ∈ D̄T : −τ < x < τ },

III = {(x, τ ) ∈ D̄T : x < −τ },

⎫⎬
⎭ (2.29)

and denote the C+ and C− characteristics which eminate from x = τ = 0 as C0+ and C0−, respectively. An illustration
is given in Fig. 1. The initial-value problem (2.22–2.17) has been examined in detail in NK, and it is instructive
at this point to review their results. In NK it was demonstrated that the initial-value problem (2.22–2.17) has no
classical solution. However, it does admit a unique, global, weak solution in the sense of regularity according to
the characteristic integration of the characteristic equations (2.28) subject to conditions (2.23) and (2.24). This con-
struction allows for simple jump discontinuities in α and β which can only propagate along the characteristics C+

Fig. 1 The (x, τ, )-plane

123



The evolution of travelling wave-fronts in a hyperbolic Fisher model. II. The initial-value problem 175

and C−, respectively, together with simple jump discontinuities in the derivatives αt , αx , βt , βx which are allowed to
propagate along either of the C+ and C− characteristics. The construction of this solution must conform everywhere
in D̄T to characteristic integration, according to (2.28) and (2.23), (2.24). From NK, this weak solution is global
and unique and has,

α(x, τ ) = β(x, τ ) = 0 in I, (2.30)

α(x, τ ) = β(x, τ ) = 1

2
in III. (2.31)

Further, it was established in NK that the weak solution in domain II must be continuous and continuously differ-
entiable. However, the weak solution must admit discontinuities across the two characteristic curves C0+ and C0− in
α and β, respectively. In summary, we have from NK the following: Concerning C0+, we have that

[α]L
R = α+(τ ) across C0+. (2.32)

Here [.]L
R indicates the difference between the limit from the left and the limit from the right. Now, from the

characteristic equations (2.28a), (2.28b), we have on C0+, that α+(τ ) satisfies,

α′+ = f (α+, 0), τ ∈ (0, T ], α+(0) = 1

2
. (2.33)

Here ′ denotes differentiation with respect to τ . Concerning C0−, we have that

[β]L
R ≡ 1

2
− β−(τ ) across C0−, (2.34)

where β−(τ ) satisfies,

β ′− = g(1/2, β−), τ ∈ (0, T ], β−(0) = 0. (2.35)

Further, we have that

[βτ ]L
R = 1

2 g(α+(τ ), 0)

[βx ]L
R = − 1

2 g(α+(τ ), 0)

⎫⎬
⎭ across C0+, (2.36)

and

[ατ ]L
R = − 1

2 f (1/2, β−(τ ))

[αx ]L
R = − 1

2 f (1/2, β−(τ ))

⎫⎬
⎭ across C0−. (2.37)

It was further established in NK that the weak solution to IVP has,

0 ≤ α(x, τ ) ≤ 1

2
, 0 ≤ β(x, τ ) ≤ 1

2
(2.38)

for all (x, τ ) ∈ D̄∞. For the purpose of the present paper it is instructive to re-cast the above in terms of ū and q̄
rather than α and β, which follows via (2.21). We then have,

ū(x, τ ) = q̄(x, τ ) = 0 in I

ū(x, τ ) = 1, q̄(x, τ ) = 0 in III

ū, q̄ ∈ BC1 in II

(2.39)

together with the following jumps across C0+ and C0−,

[ū]L
R = α+(τ ),

[q̄]L
R = α+(τ ),

⎫⎬
⎭ across C0+.
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[ū]L
R = 1

2 − β−(τ ),

[q̄]L
R = − 1

2 + β−(τ ),

⎫⎬
⎭ across C0−.

Further, the problem in domain II is given by

ūτ + q̄x = ε[ū(1 − ū)]+,

q̄τ + ūx = −q̄,

}
− τ < x < τ, τ ∈ (0, T ], (2.40)

ū(−τ, τ ) = 1

2
+ β−(τ ), q̄(−τ, τ ) = 1

2
− β−(τ ), τ ∈ (0, T ], (2.41)

ū(τ, τ ) = α+(τ ), q̄(τ, τ ) = α+(τ ), τ ∈ (0, T ]. (2.42)

It is instructive for what follows to reformulate the problem (2.40–2.42) as a scalar problem.

2.2 The scalar problem

It is the object of this paper to discuss the solution to (2.40–2.42) in domain II, with particular emphasis on the
structure of the solution in domain II as τ → ∞. Since ū, q̄ ∈ BC1 in domain II, we can reformulate (2.40–2.42)
as a scalar problem, which is convenient for what follows. On applying the operator

(
∂
∂τ

+ 1
)

to Eq. 2.401, and
eliminating q̄ via Eq. 2.402, we arrive at the following scalar problem for ū ∈ BC2 in domain II, namely,

ūττ + [2εū + (1 − ε)] ūτ = ūxx + εū(1 − ū), −τ < x < τ, τ > 0, (2.43)

ū(−τ, τ ) = 1

2
+ β−(τ ), τ > 0, (2.44)

ū(τ, τ ) = α+(τ ), τ > 0, (2.45)

where α+ : [0,∞) → R and β− : [0,∞) → R are given by the unique, global solution to (2.33) and (2.35),
respectively. It is straightforward to solve (2.33) to obtain α+(τ ), τ ≥ 0, explicity as,

α+(τ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1−ε)e− (1−ε)
2 τ

(2−ε)−εe− (1−ε)
2 τ

, 0 < ε < 1,

2
4+τ

, ε = 1,
(ε−1)

ε−(2−ε)e− (ε−1)
2 τ

, ε > 1.

(2.46)

We observe immediately that there is a bifurcation in the behaviour of α+(τ ), as τ → ∞, when ε = 1. Here,
specifically,

α+(τ ) →
{

0, 0 < ε ≤ 1
1 − 1

ε
, ε > 1

as τ → ∞. In more detail we have,

α+(τ ) ∼

⎧⎪⎪⎨
⎪⎪⎩

(
1−ε
2−ε

)
e− (1−ε)

2 τ + . . . , 0 < ε < 1,

2
τ

+ . . . , ε = 1,

1 − 1
ε

+ (ε−1)(2−ε)

ε2 e− (ε−1)
2 τ + . . . , ε > 1,

(2.47)

as τ → ∞. Thus, the discontinuity in ū across x = τ decays to zero as τ → ∞ when 0 < ε ≤ 1 (exponentially
in τ when 0 < ε < 1, but only algebraically in τ when ε = 1), but approaches the finite value

(
1 − 1

ε

)
as τ → ∞

(exponentially in τ ) when ε > 1. To complete the problem (2.43–2.44) we can solve (2.35) to obtain β−(τ ), τ ≥ 0,
explicitly as,

β−(τ ) = (ε + 2)

2

(
1 − e− (1+ε)

2 τ
)

(ε + 2) + εe− (1+ε)
2 τ

(2.48)
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from which we observe that β−(τ ) → 1
2 as τ → ∞ for each ε > 0, with, specifically,

β−(τ ) ∼ 1

2
−

(
ε + 1

ε + 2

)
e− (1+ε)

2 τ + . . . , (2.49)

as τ → ∞. Thus, for all ε > 0, the discontinuity in ū across x = −τ decays to zero as τ → ∞ (exponentially
in τ ). It is now our purpose to examine the structure of the solution to (2.43–2.45) as τ → ∞, via the method of
matched asymptotic expansions. However, for completeness, we begin with the asymptotic structure of the solution
to (2.43–2.45) as τ → 0+.

2.3 Asymptotic structure as τ → 0+

It follows from (2.46) and (2.48) that

α+(τ ) = 1
2 − 1

8 (2 − ε)τ + O
(
τ 2

)
,

β−(τ ) = 1
8 (2 + ε)τ + O

(
τ 2

) (2.50)

as τ → 0+. It then follows from (2.44), (2.45), that with y = x
τ

= O(1) as τ → 0+, then,

ū(y, τ ) = 1

2
+ τ f1(y) + O

(
τ 2

)
(2.51)

as τ → 0+ with −1 ≤ y ≤ 1. On substituting from (2.50) and (2.51) in (2.43–2.45) we find that

f1(y) = −1

8
(2y − ε),

so that,

ū(y, τ ) = 1

2
− 1

8
(2y − ε)τ + O

(
τ 2

)

as τ → 0+ with −1 ≤ y ≤ 1. We now consider the structure of the solution to (2.43)–(2.45) as τ → ∞.

3 Asymptotic structure as τ → ∞ when 0 < ε < 1

We first consider the asymptotic solution to (2.43–2.45) as τ → ∞, for 0 < ε < 1, via the method of matched
asymptotic expansions. In what follows it is natural to again define the scaled coordinate y, via

y = x

τ
= O(1), (3.1)

as τ → ∞, where −1 ≤ y ≤ 1 in domain II.
We begin in region I (the sharp hyperbolic wave-front region with propagation speed ṠH (τ ) = +1 and strength

ū = O
(

e− (1−ε)
2 τ

)
as τ → ∞) where y = 1 − O

(
1
τ 2

)
as τ → ∞ [that is, via (3.1), x = τ − O

( 1
τ

)
as τ → ∞].

Thus we introduce the scaled variable ȳ, where

y = 1 + ȳ

τ 2 (3.2)

with ȳ = O(1)(≤0) as τ → ∞. We note, via (2.45) and (2.47)1, that in region I with ū = ū(ȳ, τ ), then,

ū(0, τ ) ∼
(

1 − ε

2 − ε

)
e− (1−ε)

2 τ , (3.3)

as τ → ∞. An examination of (3.3) then leads us to look for for an expansion in region I of the form

ū(ȳ, τ ) = (F(ȳ) + o(1)) e− (1−ε)
2 τ , (3.4)
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as τ → ∞ with ȳ = O(1) (≤0) On substitution of expansion (3.4) in Eq. 2.43 (when written in terms of ȳ), we
obtain the leading-order equation for F(ȳ) as

2 ȳFȳ ȳ + 2Fȳ + (1 + ε)2

4
F = 0, ȳ < 0. (3.5)

Equation 3.5 must be solved subject to satisfying the boundary condition at ȳ = 0 [that is x = τ ] given by (via
(3.3) and (3.4))

F(0) =
(

1 − ε

2 − ε

)
. (3.6)

On writing ȳ = − 2
(1+ε)2 s2 (s ≥ 0), Eq. 3.5 becomes

s2 Fss + s Fs − s2 F = 0, s > 0, (3.7)

which is the modified Bessel’s equation of order zero. Hence the general solution of (3.5) may be written as

F(ȳ) = A0I0

[
(1 + ε)√

2
(−ȳ)1/2

]
+ B0K0

[
(1 + ε)√

2
(−ȳ)1/2

]
, ȳ ≤ 0, (3.8)

where I0[.] and K0[.] are the usual modified Bessel functions of order zero, and A0, B0 are arbitary constants. Apply-

ing boundary condition (3.6) (using the small argument asymptotic forms of I0 and K0) then requires A0 =
(

1−ε
2−ε

)
,

B0 = 0, after which we have

F(ȳ) =
(

1 − ε

2 − ε

)
I0

[
(1 + ε)√

2
(−ȳ)1/2

]
, ȳ ≤ 0. (3.9)

Finally, in region I, we have

ū(ȳ, τ ) =
((

1 − ε

2 − ε

)
I0

[
(1 + ε)√

2
(−ȳ)1/2

]
+ o(1)

)
e− (1−ε)

2 τ , (3.10)

as τ → ∞, with ȳ = O(1) (≤0). We now examine the form of (3.10) for (−ȳ) 
 1 (as we move out of region I
into region II where y = O(1) (< 1)) as τ → ∞. From (3.10) we have,

ū(ȳ, τ ) ∼ A(−ȳ)−1/4 exp

{
(1 + ε)√

2
(−ȳ)1/2 − (1 − ε)

2
τ

}
(3.11)

with (−ȳ) 
 1, where

A =
(

1 − ε

2 − ε

)
21/4

√
2π(1 + ε)1/2

. (3.12)

When written in terms of y, (3.11) becomes,

ū(y, τ ) ∼ exp

{(
(1 + ε)√

2
(1 − y)1/2 − (1 − ε)

2

)
τ − 1

2
log τ − 1

4
log(1 − y) + log A

}
. (3.13)

Thus in region II we look for an expansion of the form

ū(y, τ ) = e−H(y,τ ), (3.14)

where

H(y, τ ) = h0(y)τ + h1(y) log τ + h2(y) + o(1) as τ → ∞ (3.15)

with y = O(1) (<1) as τ → ∞, and h0(y) > 0. On substituting from (3.14) and (3.15) in Eq. 2.43 (when written
in terms of y and τ ) and solving at each order in turn, we find (after matching with expansion (3.10) of region I as
y → 1−) that in region II we have

ū(y, τ ) = exp

{[
(1 + ε)

2

(
1 − y2

) 1
2 − (1 − ε)

2

]
τ − 1

2
log τ − Ĥ(y) + o(1)

}
, (3.16)
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as τ → ∞, where 2ε1/2

(1+ε)
+o(1) < y < 1−o(1) as τ → ∞. We note that the function Ĥ(y) remains undetermined,

but matching with region I requires that

Ĥ(y) ∼ 1

4
log(1 − y) − log A as y → 1−. (3.17)

Further, expansion (3.16) becomes non-uniform as y →
(

2ε1/2

1+ε

)+
(<1), and in particular when

y = 2ε1/2

(1 + ε)
+ O

(
1

τ

)
, (3.18)

as τ → ∞. We must therefore introduce a further region, which we denote as region TW. Region TW is the
reaction–diffusion wave-front region. In region TW, we have from (3.18) and (3.16), that ū = O(1) as τ → ∞.
In terms of the original coordinates, we have in this region x = s(τ ) + z, where z = O(1) as τ → ∞, is the
travelling-wave coordinate, and

s(τ ) = v∗(ε)τ + φ̂(τ ) + φ0 + o(1) (3.19)

as τ → ∞. Here

v∗(ε) = 2ε
1
2

(1 + ε)
(3.20)

via (3.18), φ̂(τ ) = o(τ ) as τ → ∞ is an (as yet) undetermined gauge function (which has φ̂(τ ) → ∞ as τ → ∞)
and φ0 is a constant. In terms of y, we have in region TW,

y = s(τ )

τ
+ z

τ
, (3.21)

as τ → ∞, with z = O(1), and via (3.19) s(τ )
τ

∼ v∗(ε) as τ → ∞. We now expand in region TW in the form

ū(z, τ ) = uc(z) + o(1) (3.22)

as τ → ∞ with z = O(1). On substituting expansion (3.22) in Eq. 2.43 (when written in terms of z and τ ), we
obtain the leading-order problem as(

1 − (
v∗(ε)

)2
)

u′′
c + v∗(ε)[2εuc + (1 − ε)]u′

c + εuc(1 − uc) = 0, −∞ < z < ∞, (3.23)

uc(z) > 0, −∞ < z < ∞, (3.24)

uc(z) → 0 as z → ∞, (3.25)

uc(z) bounded as z → −∞. (3.26)

The condition (3.25) arises from matching expansion (3.22) (as z → ∞) with expansion (3.16) (as y → (v∗(ε))+).
Moreover, a phase-plane analysis of (3.23–3.25) allows boundary condition (3.26) to be replaced by

uc(z) → 1 as z → −∞. (3.27)

The boundary-value problem (3.23–3.27) (for 0 < ε < 1) has been examined in detail in Sect. 4 of NL, where
it was established that there exists a unique classical solution to (3.23–3.27), up to translations in z, which we
denote as uT (z, v∗(ε)), and represents the minimum speed (v = v∗(ε)) permanent form travelling-wave solution.
The translational invarience can be absorbed into the constant φ0 in (3.19), and then uT (z, v∗(ε)) is fixed so that
uT (0, v∗(ε)) = 1

2 . Further, we note that from NL,

uT (z, v∗(ε)) ∼

⎧⎪⎪⎨
⎪⎪⎩

A∗ε1/2√
1−(v∗(ε))2

z exp

(
− ε1/2z√

1−(v∗(ε))2

)
, z → +∞,

1 − Â exp

(
λ̂+ε1/2z√
1−(v∗(ε))2

)
, z → −∞,

(3.28)
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where A∗, Â are fixed positive constants and

λ̂+ = − (1 + ε)

(1 − ε)
+

√
2

(1 − ε)

√
1 + ε2 (>0). (3.29)

Hence in region TW we have, after determining via balancing arguments in Eq. 2.43 (when written in terms of z
and τ ), the order of the correction term in expansion (3.22), that

ū(z, τ ) = uT (z, v∗(ε)) + O
[
ṡ(τ ) − v∗(ε)

]
(3.30)

with

s(τ ) = v∗(ε)τ + φ̂(τ ) + φ0 + o(1) as τ → ∞. (3.31)

It now remains to match (3.30) (as z → ∞) with expansion (3.16) (as y → (v∗(ε))+). The matching is readily
performed (matching U ≡ log ū is most convienent) and this determines the gauge function φ̂(τ ) as

φ̂(τ ) = − 3(1 − ε)

2(1 + ε)ε1/2 log τ, (3.32)

and requires that

Ĥ(y) ∼ − log(y − v∗(ε)) as y → (v∗(ε))+. (3.33)

Thus, we have in region TW that

ū(z, τ ) = uT (z, v∗(ε)) + O
(
τ−1

)
as τ → ∞ (3.34)

with z = O(1), and

s(τ ) = v∗(ε)τ − 3(1 − ε)

2(1 + ε)ε1/2 log τ + φ0 + o(1) as τ → ∞, (3.35)

where v∗(ε) is given by (3.20). Further, we note that the asymptotic speed of this reaction–diffusion wave-front is
given by

ṡ(τ ) = v∗(ε) − 3(1 − ε)

2(1 + ε)ε1/2

1

τ
+ o

(
1

τ

)
(3.36)

as τ → ∞. We note that v∗(ε) is the minimum propagation speed identified in NL, and that the correction to the
propagation speed is algebraic in τ , as τ → ∞, being O

(
τ−1

)
, as is the rate of convergence to the wave-front.

For (−z) 
 1 we move out of the localized region TW into region III, where −1 + o(1) < y < v∗(ε) − o(1).
On rewriting expansion (3.34) for (−z) 
 1 (obtained from (3.28)(b)), we obtain

ū(z, τ ) ∼ 1 − Â exp

⎛
⎝ λ̂+ε

1
2 z[

1 − (v∗(ε))2] 1
2

⎞
⎠ (3.37)

which in terms of y becomes

ū(y, τ ) ∼ 1 − exp

(
λ̂+

(1 + ε)ε1/2

(1 − ε)
(y − v∗(ε))τ + 3

2
λ̂+ log τ − φ0λ̂+

(1 + ε)ε1/2

(1 − ε)
+ log Â

)
. (3.38)

However, before considering region III, it is instructive first to consider the sharp hyperbolic wave-front region

with speed ṠH (τ ) = −1 and strength ū = 1 − O
(

e− (1+ε)
2 τ

)
as τ → ∞. We label this as region IV. The details

of this region follow (after minor modifications) those given for region I and are summarized here for brevity. To

examine region IV, where y = −1 + O
(

1
τ 2

)
as τ → ∞ we introduce the scaled variable ŷ, where

y = −1 + ŷ

τ 2 (3.39)
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with ŷ = O(1)(≥0) as τ → ∞. An examination of (2.44) and (2.48) leads us to look for for an expansion in region
IV of the form

ū(ŷ, τ ) = 1 − G(ŷ)e− (1+ε)
2 τ + o

(
e− (1+ε)

2 τ
)

(3.40)

as τ → ∞ where G(ŷ) = O(1)(>0). On substitution of expansion (3.40) in Eq. 2.43 (when written in terms of ŷ),
we obtain the leading-order equation for G(ŷ) as

2 ŷG ŷ ŷ + 2G ŷ − (1 − ε)2

4
G = 0, ŷ > 0. (3.41)

Equation 3.41 must be solved subject to satisfying the boundary condition at ŷ = 0 [that is x = −τ ] given by

G(0) =
(

1 + ε

2 + ε

)
. (3.42)

The solution to (3.41), (3.42) can readily be written down as

G(ŷ) =
(

1 + ε

2 + ε

)
I0

[
(1 − ε)√

2
ŷ1/2

]
, ŷ ≥ 0, (3.43)

where I0[.] is the usual modified Bessel function of order zero. Finally, in region IV, we have

ū(ŷ, τ ) = 1 −
(

1 + ε

2 + ε

)
I0

[
(1 − ε)√

2
ŷ1/2

]
e− (1+ε)

2 τ + o
(

e− (1+ε)
2 τ

)
, (3.44)

as τ → ∞, with ŷ = O(1)(≥0). Now as ŷ → ∞ we move into region III. On consideration of (3.44) we obtain

ū(ŷ, τ ) ∼ 1 −
(

1 + ε

2 + ε

)
21/4

√
2π(1 − ε)

ŷ−1/4 exp

(
(1 − ε)√

2
ŷ1/2 − (1 + ε)

2
τ

)
(3.45)

as τ → ∞ with ŷ 
 1. On writing (3.45) in terms of y, we obtain

ū(y, τ ) ∼ 1 − B(y + 1)−1/4τ−1/2 exp

(
(1 − ε)√

2
(y + 1)1/2 − (1 + ε)

2

)
τ, (3.46)

where

B =
(

1 + ε

2 + ε

)
21/4

√
2π(1 − ε)

.

The structure of expansions (3.46) and (3.38) as we move into region III from regions IV and TW, respectively,
suggests that in region III we write

ū(y, τ ) = 1 − e−	(y,τ ) (3.47)

and expand in the form

	(y, τ ) = 	0(y)τ + 	1(y) log τ + 	2(y) + o(1), (3.48)

as τ → ∞ with −1 + o(1) < y < v∗ − o(1). It is instructive to consider first the leading-order problem in region
III. On substituting from (3.47), (3.48) in Eq. 2.43 (when written in terms of y and τ ), we obtain at leading order(

1 − y2
) (

	′
0

)2 + y	′
0 [2	0 − (1 + ε)] − (	0 − 1)(	0 − ε) = 0 (3.49)

with −1 < y < v∗(ε). Equation 3.49 is to be solved subject to matching with region TW (as y → (v∗(ε))−) and
with region IV (as y → −1+). The matching condition with region TW is given, via (3.38), as

	0(y) ∼ −λ̂+
(1 + ε)ε1/2

(1 − ε)

(
y − v∗(ε)

)
as y → (v∗(ε))−. (3.50)

Whilst the matching condition with region IV requires, via (3.46), that

	0(y) ∼ (1 + ε)

2
− (1 − ε)√

2
(y + 1)

1
2 as y → −1+. (3.51)
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Fig. 2 Schematic
representation of the
envelope and linear
solutions to Eq. 3.49

It is readily established that Eq. 3.49 admits the linear solution

	0(y) = −λ̂+
(1 + ε)ε1/2

(1 − ε)

(
y − v∗(ε)

)
, −1 ≤ y ≤ v∗(ε). (3.52)

However, expansion (3.47) (with (3.48) and (3.52) ) fails to match to expansion (3.44) of region IV as y → −1+.
Further consideration of Eq. 3.49 reveals that along with the constant solutions

	0(y) = 1 and 	0(y) = ε,

and the family of linear solutions

	0(y) = αy + β where α2 = (β − 1)(β − ε), β ∈ (−∞, ε] ∪ [1,∞), (3.53)

there are also the singular envelope solutions,

	±
0 (y) = ± (1 − ε)

2

(
1 − y2

) 1
2 + (1 + ε)

2
, −1 ≤ y ≤ 1. (3.54)

A schematic representation of the solutions to (3.49) is given in Fig. 2. Clearly, on taking

	0(y) = 	−
0 (y) = − (1 − ε)

2

√
1 − y2 + (1 + ε)

2
, (3.55)

expansion (3.47) (with (3.48)) matches at leading order with expansion (3.44) as y → −1. Hence, we select the
following solution in region III

	0(y) =
{

− (1−ε)
2

√
1 − y2 + (1+ε)

2 , −1 < y < yT ,

−λ̂+ (1+ε)ε1/2

(1−ε)
(y − v∗(ε)) , yT ≤ y < v∗,

(3.56)

where

yT = 2γ

2γ v∗(ε) + (1 + ε)

with

γ = −λ̂+
(1 + ε)ε1/2

(1 − ε)
,

and we observe that −1 < yT < 0 for 0 < ε < 1. However, it is important to note that, although 	0(y) and 	′
0(y)

are continuous for y ∈ (−1, v∗(ε)), the second derivative 	′′
0(y) is discontinuous at the point y = yT , at which the

linear solution (3.52) tangentially meets the singular envelope solution (3.55). This indicates that a thin transition
region exists in the neighbourhood of y = yT , in which second-order derivatives are retained a leading order to
smooth out this discontinuity in curvature. Hence, to accommodate this transition region, region III is replaced by
three subregions: region III(a) (yT + o(1) < y < v∗ − o(1)), region TR (transition region, y = yT ± o(1)) and
region III(b) (−1 + o(1) < y < yT − o(1)). We consider each of these regions in turn. We begin in region III(b),
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where −1 + o(1) < y < yT − o(1). Substitution of (3.47), (3.48) in Eq. 2.43 (when written in terms of y and τ )
gives on solving at each order in turn and matching to expansion (3.44) as y → −1, that

ū(y, τ ) = 1 − exp

([
(1 − ε)

2

√
1 − y2 − (1 + ε)

2

]
τ − 1

2
log τ − K (y) + o(1)

)
(3.57)

as τ → ∞ with −1 + o(1) < y < yT − o(1), where

K (y) ∼ 1

4
log(1 + y) − log B (3.58)

as y → −1+. The function K (y) remains undetermined. We now consider region III(a). The expansion in region
III(a) is given by

ū(y, τ ) = 1 − exp

(
λ̂+

(1 + ε)ε1/2

(1 − ε)

(
y − v∗(ε)

)
τ − c1 log τ − c1 log |y − yT | − c2 + o(1)

)
(3.59)

as τ → ∞, with yT + o(1) < y < v∗(ε) − o(1) where c1 and c2 are constants to be determined on matching
with region TW as y → (v∗(ε))−. Matching expansion (3.59) (as y → v∗) with expansion (3.34) (as z → −∞)
requires that

c1 = −3

2
λ̂+, c2 = 3

2
λ̂+ log(v∗ − yT ) − φ0γ − log Â. (3.60)

As y → y+
T we move into the transition region, region TR. An examination of expansion (3.59) (as y → yT )

reveals that in this region y = yT + O
(
τ−1/2

)
as τ → ∞. To examine region TR we therefore introduce the scaled

coordinate η = (y − yT )τ 1/2, where η = O(1) as τ → ∞, and expand as

ū(η, τ ) = 1 − [
h(η)τ κ + o(1)

]
exp

(
λ̂+

(1 + ε)ε1/2

(1 − ε)

{(
yT − v∗(ε)

)
τ + ητ 1/2

})
(3.61)

as τ → ∞ with h(η) > 0 and η = O(1), whilst κ = 3
4 λ̂+, via (3.59). Substitution of (3.61) in Eq. 2.43 (when

written in terms of η and τ ) gives at leading order

hηη + C 1

2
ηhη − κCh = 0, −∞ < η < ∞, (3.62)

where

C = (1 − ε)

(1 − y2
T )3/2

. (3.63)

On writing η = C−1/2ξ , we obtain Eq. 3.62 in the following form

hξξ + ξ

2
hξ − κh = 0, −∞ < ξ < ∞ (3.64)

with κ > 0 as given previously. It is established in the appendix that Eq. 3.64 has a solution h = h+(ξ), where
h+(ξ) is an even function, is strictly positive and has

h+(ξ) ∼ |ξ |2κ as |ξ | → ∞.

The general solution to Eq. 3.64 is then given by

h(ξ) = C0h+(ξ) + D0

K
h+(ξ)

∫ ξ

−∞
e− s2

4

[h+(s)]2 ds, −∞ < ξ < ∞, (3.65)

where C0 and D0 are arbitary constants and

K =
∫ ∞

−∞
e− s2

4

[h+(s)]2 ds. (3.66)
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Fig. 3 Schematic representation of the location and thickness of the asymptotic regions as t → ∞ in the subsonic case when 0 < ε < 1.

Note that in this case yT = 2γ
2γ v∗+(1+ε)

, where γ = −λ̂+ (1+ε)ε1/2

(1−ε)
. Further, regions I and IV are the sharp hyperbolic wave-front regions,

while region TW is the reaction–diffusion wave-front region

Thus, in terms of η, we have

h(η) = C0h+(C1/2η) + D0

K
h+(C1/2η)

∫ C1/2η

−∞
e− s2

4

[h+(s)]2 ds, −∞ < η < ∞. (3.67)

and we observe that,

h(η) ∼
{

(C0 + D0) Cκη2κ as η → ∞,

C0Cκ(−η)2κ + 2D0
KCκ+1/2 (−η)−(2κ+1)e− Cη2

4 as η → −∞.
(3.68)

We now complete the asymptotic structure in this case by matching expansion (3.61) (with (3.68)) of region TR to
expansion (3.59) of region III(a) (as η → ∞) and to expansion (3.57) of region III(b) (as η → −∞). Matching
requires that

C0 = 0, D0 = C−κe−c2 (3.69)

and

K (y) ∼
(

3

2
λ̂+ + 1

)
log(yT − y) − log

(
2D0

KCκ+1/2

)
(3.70)

as y → y−
T .

This completes the asymptotic structure of the solution to (2.43–2.45) as τ → ∞ in this case. A schematic
representation of the location and thickness of the asymptotic regions as τ → ∞ is given in Fig. 3. We note that the
reaction is totally dormant outside of domain II, with ū ≡ 1 in y < −1 [that is, x < −τ ] and ū ≡ 0 in y > 1 [that
is, x > τ ]. Regions I and IV contain the sharp hyperbolic wave-fronts, located at y = 1 and y = −1, respectively.

The hyperbolic wave-front in region I has speed ṠH (τ ) = +1 and strength ū = O
(

e− (1−ε)
2 τ

)
as τ → ∞, while

the hyperbolic wave-front in region IV has speed ṠH (τ ) = −1 and strength (ū − 1) = O
(

e− (1+ε)
2 τ

)
as τ → ∞. In

region TW we have the development of a classical reaction–diffusion wave-front of strength ū = O(1) and speed

ṠR D(τ ) = ṡ(τ ) = 2ε1/2

(1 + ε)
− 3(1 − ε)

2(1 + ε)ε1/2

1

τ
+ o

(
1

τ

)
as τ → ∞. (3.71)

Further, we note via (3.34), that the rate of convergence of the solution to (2.43)–(2.45) to the permanent form
reaction–diffusion wave is algebraic in τ , being O(τ−1) as τ → ∞.

4 Asymptotic structure as τ → ∞ when ε > 1

We now consider the asymptotic solution to (2.43–2.45) as τ → ∞, for ε > 1, via the method of matched asymptotic
expansions. Again, as in Sect. 3, it is natural to define the scaled coordinate y, via

y = x

τ
= O(1), (4.1)
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as τ → ∞, where −1 ≤ y ≤ 1. We begin as in Sect. 3 by anticipating a sharp hyperbolic wave-front region (see
region I of Sect. 3) with speed ṠH = +1 and via (2.45) and (2.47) strength ū = O(1). Following Sect. 3 this region

is located at y = 1 and is of thickness O
(

1
τ 2

)
as τ → ∞ [that is, via (4.1), x = τ − O

( 1
τ

)
as τ → ∞]. To examine

this region we introduce the scaled variable z where

y = 1 + z

τ 2 (4.2)

with z = O(1)(≤ 0) and look for an expansion of the form

ū(z, τ ) = uc(z) + o(1), (4.3)

as τ → ∞, where uc(z) = O(1). However, in this case on substituting expansion (4.3) in Eq. 2.43 (when written
in terms of z and τ ) no balance can be obtained for a region of thickness O

(
τ−2

)
as τ → ∞. On thickening this

region we find that a balance can first be achieved when the region is of thickness O
(
τ−1

)
as τ → ∞. We denote

this region of thickness O
(
τ−1

)
as region TW.

In region TW, y = 1 + O(τ−1) as τ → ∞ [that is x = τ + O(1) as τ → ∞]. To examine this region we
introduce as before the scaled variable z, where now

y = 1 + z

τ
(4.4)

with z = O(1)(≤0) On substituting expansion (4.3) in Eq. 2.43 (when written in terms of z and τ ) we obtain the
leading-order problem as

(ε − 1 − 2εu)u′
c = εu(1 − u), −∞ < z < 0, (4.5)

uc(z) ≥ 0, (4.6)

uc(z) bounded as z → −∞, (4.7)

uc(z) →
(

1 − 1

ε

)
as z → 0−. (4.8)

An examination of Eq. 4.5 requires condition (4.7) to be replaced by

uc(z) → 1 as z → −∞. (4.9)

The boundary-value problem (4.5–4.9) is now recognized as that in NL relating to sonic PTW solutions, where it
was established that (4.5–4.9) has a unique solution, given by uc = uT (z); with uT (z) having the implicit form,

uT (z)
ε−1
ε+1 (1 − uT (z)) = 1

ε

(
1 − 1

ε

) ε−1
ε+1

e
ε

ε+1 z, z ≤ 0. (4.10)

A sketch of uT (z) against z, is given in Fig. 4. Further, we note from (4.10), that

uT (z) ∼ 1 − 1

ε

(
1 − 1

ε

) ε−1
ε+1

exp

(
ε

ε + 1
z

)
as z → −∞, (4.11)

and

uT (z) =
(

1 − 1

ε

)
− 1

ε
z + O

[
z2
]

as z → 0−. (4.12)

For (−z) 
 1 we move out of the localized region TW into region I, where −1 + o(1) < y < 1 − o(1).
However, before considering region I it is instructive, as in Sect. 3, to first consider the sharp hyperbolic wave-front

region located at y = −1 which has speed ṠH (τ ) = −1 and strength (via (2.45) and (2.47)) (ū −1) = O
(

e− (1+ε)
2 τ

)
as τ → ∞, where y = −1 + O

(
τ−2

)
as τ → ∞ [that is, via (4.1), x = −τ + O

(
τ−1

)
as τ → ∞]. The details of
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Fig. 4 A sketch of uT (z)
against z, when ε > 1

this region, which we denote as region II, follow (after minor modifications) those given for region IV of Sect. 3
and are summarized here for brevity.

Region II y = −1 + O
(
τ−2

)
as τ → ∞

ū(ŷ, τ ) = 1 −
(

ε + 1

ε + 2

)
I0

[
(1 − ε)√

2
ŷ

1
2

]
e− (ε+1)

2 τ + o
(

e− (ε+1)
2 τ

)
(4.13)

as τ → ∞, with ŷ = (y + 1)τ 2 = O(1)(≥ 0), and where I0[.] is the usual modified Bessel function of order zero.
We note that in this case

ū(0, τ ) ∼ 1 −
(

ε + 1

ε + 2

)
e− (ε+1)

2 τ

as τ → ∞. As ŷ → ∞, we move out of the localized region I into region II, where −1 + o(1) < y < 1 − o(1).
We now examine the form of (4.13) for ŷ 
 1 (as we move out of region II into region I). From (4.13) we have,

ū(ŷ, τ ) ∼ 1 − B ŷ− 1
4 exp

(
(ε − 1)√

2
ŷ1/2 − (ε + 1)

2
τ

)
, (4.14)

where

B =
(

1 + ε

2 + ε

)
21/4

√
2π(ε − 1)

,

as τ → ∞ with ŷ 
 1. On writing (4.14) in terms of y we obtain

ū(y, τ ) ∼ 1 − B(y + 1)−
1
4 τ− 1

2 exp

(
(ε − 1)√

2
(y + 1)1/2 − (ε + 1)

2

)
τ (4.15)

as τ → ∞.
We now return to region I. The structure of expansions (4.14) and (4.3)(with (4.11) and (4.15)) as we move into

region I (where −1 + o(1) < y < 1 − o(1)) from regions II and TW, respectively, suggests that in region I we
write

ū(y, τ ) = 1 − e−	(y,τ ) as τ → ∞, (4.16)

and expand in the form,

	(y, τ ) = 	0(y)τ + 	1(y) log τ + 	2(y) + o(1), (4.17)

as τ → ∞ with −1 + o(1) < y < 1 − o(1). It is instructive to consider first the leading-order problem in region I.
On substituting from (4.16), (4.17) in Eq. 2.43 (when written in terms of y and τ ) we obtain at leading order(

1 − y2
) (

	′
0

)2 + y	′
0 [2	0 − (1 + ε)] − (	0 − 1)(	0 − ε) = 0, (4.18)
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where −1 < y < 1. Equation 4.18 is to be solved subject to matching with region TW (as y → 1−) and with
region II (as y → −1+). We note that Eq. 4.18 has already been considered when examining region III in Sect. 3.
The matching condition with region TW is given, via (4.3)(with (4.11)), as

	0(y) ∼ ε

ε + 1
(1 − y) as y → 1−. (4.19)

Whilst matching to region II requires

	0(y) ∼ (1 + ε)

2
+ (1 − ε)

2

√
1 − y2 as y → −1+. (4.20)

It is readily established, via (3.53), that Eq. 4.18 admits the linear solution

	0(y) = ε

(ε + 1)
(1 − y), −1 < y < 1. (4.21)

However, expansion (4.16) (with (4.17) and (4.21) ) fails to match to expansion (4.14) of region II as y → −1+.
Hence, in this case, we must select the singular solution

	0(y) = 	+
0 (y) = (1 + ε)

2
+ (1 − ε)

2

√
1 − y2, (4.22)

to enable matching with region I as y → −1+. Hence, we must select the following solution in region I

	0(y) =
{

(1−ε)
2

√
1 − y2 + (1+ε)

2 , −1 < y < yT ,
ε

ε+1 (1 − y), yT ≤ y < 1,
(4.23)

where

yT = − 2ε

1 + ε2 (>− 1).

However, we note that, although 	0(y) and 	′
0(y) are continuous over the range of definitions of (4.23), the second

derivative 	′′
0(y) is discontinuous at the point y = yT , at which the linear solution (4.21) tangentially meets the

singular solution (4.22). This indicates that a thin transition region exists in the neighbourhood of y = yT , in which
second-order derivatives are retained a leading order to smooth out this discontinuity in curvature.

Hence, to accommodate this transition region, region I is replaced by three regions: region I(b) (yT + o(1) <

y < 1 − o(1)), region TR (transition region, y = yT ± o(1)) and region I(a) (−1 + o(1) < y < yT − o(1)).
We consider each of these regions in turn. We begin in region in region I(a), where −1 + o(1) < y < yT − o(1).
Substitution of (4.16), (4.17) in Eq. 2.43 (when written in terms of y and τ ) gives on solving at each order in turn
and matching to expansion (4.14) as y → −1 that

ū(y, τ ) = 1 − exp

([
(ε − 1)

2

√
1 − y2 − (1 + ε)

2

]
τ − 1

2
log τ − K̂ (y) + o(1)

)
(4.24)

as τ → ∞ with −1 + o(1) < y < yT − o(1), where

K̂ (y) ∼ 1

4
log(1 + y) − log B (4.25)

as y → −1+. The function K̂ (y) remains undetermined. We now consider region I(b). The expansion in region
I(b) is given by

ū(y, τ ) = 1 − exp

(
ε

ε + 1
(y − 1)τ − c1 log τ − c1 log(y − yT ) − c2 + o(1)

)
(4.26)

as τ → ∞, with yT + o(1) < y < 1 − o(1), where c1 and c2 are constants to be determined on matching with
region TW as y → 1−. Matching expansion (4.26) (as y → 1) with expansion (4.3) (as z → −∞) requires that

c1 = 0, c2 = − log

(
1

ε

[
1 − 1

ε

] ε−1
ε+1

)
. (4.27)
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Fig. 5 Schematic representation of the location and thickness of the asymptotic regions as t → ∞ in the subsonic case when ε > 1.
Note that in this case yT = −2ε

1+ε2 , with yT → −1+ as ε → 1+. Further, region II is the sharp hyperbolic wave-front region, while
region TW is the reaction–diffusion wave-front region

As y → y+
T we move into the transition region, region TR. An examination of expansion (4.26) (as y → yT ) reveals

that in this region y = yT + O
(
τ−1/2

)
as τ → ∞. To examine region TR we introduce the scaled coordinate

η = (y − yT )τ 1/2, where η = O(1) as τ → ∞, and expand as

ū(η, τ ) = 1 − [F(η) + o(1)] exp

(
−ε(ε + 1)

1 + ε2 τ + ε

ε + 1
ητ 1/2

)
(4.28)

as τ → ∞ with F(η) > 0 and η = O(1). Substitution of (4.28) in Eq. 2.43 (when written in terms of η and τ )
gives at leading order

Fηη + 1

2

(ε − 1)

(1 − yT )
3
2

ηFη = 0, −∞ < η < ∞. (4.29)

The general solution to (4.29) can readily be obtained as

F(η) = A0erfc

(
η

2

√
(ε − 1)

(1 − yT )
3
2

)
+ B0, (4.30)

where A0, B0 are constants to be determined. Matching expansion (4.28) (as η → ∞) with expansion (4.26) (as
y → y+

T ) then requires that

B0 = 1

ε

(
1 − 1

ε

) ε−1
ε+1

. (4.31)

Matching expansion (4.28) (as η → −∞) with expansion (4.24) (as y → y−
T ) finally requires that

A0 = − 1

2ε

(
1 − 1

ε

) ε−1
ε+1

(4.32)

with

K̂ (y) ∼ log |y − yT | − E as y → y−
T , (4.33)

where

E = − log

⎡
⎣

(
1 − 1

ε

) ε−1
ε+1

√
2 ε

√
ε−1

(1−yT )3/2

⎤
⎦ . (4.34)

This completes the asymptotic structure of the solution to (2.43)–(2.45) as τ → ∞ in this case. A schematic
representation of the location and thickness of the asymptotic regions as t → ∞ is given in Fig. 5.
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5 Asymptotic structure as τ → ∞ when ε = 1

Finally, we consider the asymptotic solution (2.43–2.45) as τ → ∞, for ε = 1, via the method of matched
asymptotic expansions. Again, as in Sects. 3 and 4, it is natural to define the scaled coordinate y, via

y = x

τ
= O(1), (5.1)

as τ → ∞, where −1 ≤ y ≤ 1.
On consideration of the asymptotic structure of the solution (2.43–2.45) as τ → ∞ when 0 < ε < 1 (see Sect. 3)

and ε > 1 (see Sect. 4) we note the following:

(i) yT → −1+ and s(τ )
τ

→ +1− as ε → 1−, where yT and s(τ )
τ

are the locations of the transition region (region
TR) and the reaction–diffusion wave-front region (region TW), respectively. The locations of regions TR and
TW when 0 < ε < 1 are illustrated in Fig. 3.

(ii) yT → −1+ as ε → 1+, where yT is the location of the transition region (region TR). The locations of regions
TR and TW when ε > 1 are illustrated in Fig. 5.

We further note that the sharp hyperbolic wave-front regions located at y = −1 and y = 1 encounted in Sect. 3 are
not present in this case.

The above indicates that in this case there are two primary asymptotic regions, region I (−1 ≤ y < 1 − o(1))

and the reaction–diffusion wave-front region, region TW. The details of these regions are for brevity summarized
below (with the details following those given for similar regions in earlier sections).

Region I −1 ≤ y < 1 − O
(
τ−1

)
as τ → ∞

The expansion in region I is given by

ū(y, τ ) = 1 − e− (1−y)
2 τ + e−τ

3
+ o

(
e−τ

)
(5.2)

as τ → ∞.

Region TW
In region TW, y = 1 + O(τ−1) [that is x = τ + O(1)] and ū = O(1), via boundary condition (2.45) when

ε = 1 Thus we expand in the form

ū(z, τ ) = uc(z) + o(1), (5.3)

as τ → ∞ with z = O(1), where z = (y − 1)τ = (x − τ). On substituting expansion (5.3) in Eq. 2.43 (when
written in terms of z and τ ) we obtain the leading-order problem as

u′
c = −1

2
(1 − u), −∞ < z < 0, (5.4)

uc(z) ≥ 0, (5.5)

uc(z) bounded as z → −∞, (5.6)

uc(z) → 0 as z → 0−. (5.7)

An examination of Eq. 5.4 requires condition (5.6) to be replaced by

uc(z) → 1 as z → −∞. (5.8)

The boundary-value problem (5.4–5.8) is now recognized as that in NL relating to sonic PTW solutions, where it
was established that (5.4–5.8) has a unique solution, given by uc = uT (z), where

uT (z) =
{

1 − e
1
2 z, z ≤ 0,

0, z > 0,
(5.9)
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Fig. 6 A sketch of uT (z)
against z, when ε = 1

Fig. 7 Schematic representation of the location and thickness of the asymptotic regions as t → ∞ when ε = 1. Note that region TW
is the reaction–diffusion wave-front region

and translational invariance has been fixed by taking uT (0) = 0. Note that the solution is classical everywhere
except at z = 0, where there is a gradient discontinuity [u′

T (z)]L
R = − 1

2 . A sketch of uT (z) against z is given in
Fig. 6.

This completes the asymptotic structure of the solution to (2.43–2.45) as τ → ∞ in this case. A schematic
representation of the location and thickness of the asymptotic regions as t → ∞ is given in Fig. 7.

6 Discussion

The asymptotic structure of the solution, ū(x, τ ), of (2.43–2.45) in domain II (−τ ≤ x ≤ τ ) as τ → ∞ in the cases
0 < ε < 1, ε = 1 and ε > 1 is complete. In each case we have demonstrated, via the method of matched asymp-
totic expansions, that the large-time structure of the solution to (2.43–2.45) involves the evolution of a propagating
travelling-wave front. We note that the reaction is totally dormant outside of domain II, with ū ≡ 1 in domain III
(x < −τ ) and ū ≡ 0 in domain I (x > τ ). In particular, we note that:

(i) 0 < ε < 1.
In this case we note the presence of sharp hyperbolic wave-fronts located at x = ±τ . The hyperbolic wave-

front in region I [located at x = τ ] has speed ṠH (τ ) = +1 and strength ū = O
(

e− (1−ε)
2 τ

)
as τ → ∞,

while the hyperbolic wave-front in region IV [located at x = −τ ] has speed ṠH (τ ) = −1 and strength

(ū − 1) = O
(

e− (1+ε)
2 τ

)
as τ → ∞. Further, in region TW [located at x = s(τ ), where s(τ ) is given by

(3.35)] we have the development of a classical reaction–diffusion wave-front of strength ū = O(1). We have
demonstrated that the solution to (2.43–2.45), ū(x, τ ), has

ū(z, τ ) = uT (z, v∗(ε)) + O
(
τ−1

)
as τ → ∞ (6.1)

with z = x − s(τ ) = O(1), and where uT (z, v∗(ε)) represents the minimum speed permanent form trav-
elling-wave solution. we recall v∗(ε) = 2ε1/2

(1+ε)
(which is the minimum propagation speed identified in NL).
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Further, we note that the asymptotic speed of the wave-front is given by

ṠR D(τ ) = v∗(ε) − 3(1 − ε)

2(1 + ε)ε1/2

1

τ
+ o

(
1

τ

)
(6.2)

as τ → ∞. We note that the correction to the propagation speed is algebraic in τ , as τ → ∞, being O
(
τ−1

)
,

as is the rate of convergence to the wave-front. On rewriting (3.71) in terms of the original variables x̄ and t ,
via (2.12), we obtain

ṠR D(t) = 2

(1 + ε)
− 3

2

(1 − ε)

(1 + ε)

1

t
+ o

(
1

t

)
as t → ∞. (6.3)

We note the correspondance of (6.3) to the result of Bramson [8], in the limit as ε → 0+.
(ii) ε > 1.

In this case we note the presence of a sharp hyperbolic wave-front in region I (located at x = −τ ). The

hyperbolic wave-front has speed ṠH (τ ) = −1 and strength (ū − 1) = O
(

e− (1+ε)
2 τ

)
as τ → ∞. However,

as in case (iii) when ε = 1 the permanent form travelling-wave solution evolves in region TW [located at
x = τ ], and has speed ṡ(τ ) = 1. We have demonstrated that the solution to (2.43–2.45), ū(x, τ ), has

ū(z, τ ) = uT (z, 1) + o (1) as τ → ∞ (6.4)

with z = x − τ = O(1), and where uT (z, 1) represents the weak solution of the travelling wave problem
(4.5–4.8) with a jump discontinuity at z = 0 [that is, x = τ ]. This represents a permanent form reaction–
relaxation wave-front

(iii) ε = 1.
The permanent form travelling wave solution evolves in region TW [located at x = τ ], and has speed ṡ(τ ) = 1.
We have demonstrated that the solution to (2.43–2.45), ū(x, τ ), has

ū(z, τ ) = uT (z, 1) + o (1) as τ → ∞ (6.5)

with z = x −τ = O(1), and where uT (z, 1) represents the solution to the travelling-wave problem (4.5–4.8).
We note that this solution is classical everywhere except at z = 0, where there is a gradient discontinuiy[
u′

T (z)
]L

R = − 1
2 . This represents a permanent form hyperbolic reaction–relaxation–diffusion wave-front.

7 Conclusions

In this paper the method of matched asymptotic expansions was used to obtain the complete large-time structure
of the solution to an initial-value problem based on the hyperbolic Fisher equation, with particular emphasis on the
propagating wavefront. It has been established that the large-time structure of the solution to the initial-value prob-
lem involves the evolution of a propagating wavefront which is of reaction–diffusion type or reaction–relaxation
type. In particular, when 0 < ε < 1, we obtain

ṡ(t) = 2

(1 + ε)
− 3

2

(1 − ε)

(1 + ε)

1

t
+ o

(
1

t

)
(7.1)

as t → ∞, where s(t) is a measure of the location of the wavefront at time t . This paper has provided the first
generalization of the classical result of Bramson (who considered the classical Fisher equation (ε = 0) with step
initial data) in the context of hyperbolic reaction–diffusion theory. We note the correspondence of (7.1) to the result
of Bramson (see [8]), in the limit as ε → 0+. It was demonstrated that a bifurcation occurs across ε = 1, in
the following sense: for 0 < ε < 1 the wavefronts are of classical permanent form reaction–diffusion type with
propagation speed 2

1+ε
; for ε = 1 the wavefront is non-classical (being a continuous weak solution with a gradient

jump) of reaction–relaxation–diffusion type with speed ε− 1
2 ; for ε > 1 the wavefronts are non-classical (being a

weak solution with a jump discontinuity ) of reaction–relaxation type with speed ε− 1
2 . We note that when 0 < ε < 1

(ε ≥ 1) the wavefront speed is subsonic (sonic) in relation to the hyperbolic wave speed ε− 1
2 , respectively. These

results agree with the numerical solutions of the initial-boundary-value problem presented in [7].
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Appendix A Analysis of Eq. 3.64

We first consider the initial value problem

h′′ + ξ

2
h′ − κh = 0, −∞ < ξ < ∞, (A.1)

h(0) = 1, h′(0) = 0. (A.2)

It is straightforward to establish (via the method of Frobenious) that (A.1), (A.2) has the unique global solution
given by h = φ+(ξ) where

φ+(ξ) = 1 +
∞∑

n=1

κ!
(κ − n)!(2n)! ξ2n, −∞ < ξ < ∞. (A.3)

We observe immediately that φ+(ξ) is an even function. Now, a consideration of Eq. A.1 as |ξ | → ∞ establishes
that there exists constants A, B ∈ R, not both zero, such that

φ+(ξ) ∼ A|ξ |2κ + B|ξ |−(2κ+1)e− 1
4 ξ2

(A.4)

as |ξ | → ∞. Now suppose that A = 0 in (A.4), then B = 0, and φ+(ξ) → 0 as |ξ | → ∞. Thus, via conditions
(A.2), there exists a ξ0 ∈ R such that

φ+(ξ0) = M = sup
ξ∈R

φ+(ξ) > 0, (A.5)

φ′+(ξ0) = 0, (A.6)

φ′′+(ξ0) ≤ 0. (A.7)

However, via Eq. A.1, we must have at ξ = ξ0, using (A.5–A.7),

φ′′+(ξ0) − κ M = 0 (A.8)

and so, via (A.7),

M = 1

κ
φ′′+(ξ0) ≤ 0

which contradicts (A.5). Thus we may conclude that A = 0. We now set,

h+(ξ) = 1

A
φ+(ξ), −∞ < ξ < ∞. (A.9)

It now remains to show that h+(ξ) > 0 for −∞ < ξ < ∞. Via (A.9) and (A.4) we have that

h+(ξ) ∼ |ξ |2κ as |ξ | → ∞. (A.10)

Now suppose that there exists ξ0 ∈ R such that h+(ξ0) < 0, then there exists, via (A.10), ξ1 ∈ R such that

h+(ξ1) = m = inf
ξ∈R

h+(ξ) < 0, (A.11)

h′+(ξ1) = 0, (A.12)

h′′+(ξ1) ≥ 0. (A.13)

However, via Eq. A.1,

h′′+(ξ1) − κm = 0 (A.14)

so that,

m = 1

κ
h′′+(ξ1) ≥ 0

which contradicts (A.11). We conclude that h+(ξ) ≥ 0 for all ξ ∈ R. Now suppose there exist ξ2 ∈ R such that
h+(ξ2) = 0, then h′+(ξ2) = 0 and via uniqueness for Eq. A.1,

h+(ξ) = 0 − ∞ < ξ < ∞,

which conradicts (A.10). We conclude that

h+(ξ) > 0 for all − ∞ < ξ < ∞.
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